Characteristic Parameters of Nonlinear Wheel/Rail Contact Geometry

Oldrich Polach Bombardier Transportation Winterthur, Switzerland

Introduction

- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour
- Conclusions

Need for assessment of wheel/rail contact geometry

- Contact geometry wheel/rail or wheelset/track has an important influence on
 - running safety
 - running stability
 - oscillation behaviour
 - curving performance
- The actual geometry of wheels and rails changes due to the wear of wheels and rails, track gauge, rail inclination etc.
- Parameters like rail inclination and track gauge are not suited to assess the contact geometry
- The equivalent conicity is widely used by the railway community to characterise the contact geometry in
 - standards for vehicle acceptance (EN 14363, UIC 518) to assess the contact geometry during the on-track tests
 - Technical Specifications for Interoperability to assess
 - geometry of worn wheel profiles, combining the measured wheel profiles with theoretical rail profiles
 - geometry of rails of worn rails, combining the measured rail profiles with theoretical wheel profiles
- The equivalent conicity is considered mainly in relation to the stability assessment

BOMBARDIER

© Bombardier Inc. or its subsidiaries. All rights reserved

Stability assessment and wheel/rail contact geometry

- Self excited oscillation of a railway wheelset (instability) considers a safety risk
- Railway practice confirmed the applicability of the equivalent conicity; however, it does not consider the nonlinearity
- Progress in nonlinear railway vehicle dynamics has contributed to understanding of effects of the wheelset/track nonlinearities on the behaviour of vehicles
- Progress of measuring technology allows sampling of a large amount of wheel and rail profile data

Equivalent conicity – a quasi-linear wheel/rail contact parameter

- Equivalent conicity can be calculated using the following quasi-linearisation methods:
 - harmonic linearisation
 - equivalent linearisation (UIC 519, prEN 15302)
 - linear regression of Δr -function (UIC 519, prEN 15302)
 - UK-method base on a stochastic wheelset displacement
- The nonlinearity of wheel/rail contact leads to a change of the slope of the rolling radii difference function
- Consequently, the equivalent conicity is dependent on the nonlinearity of wheel/rail contact geometry
- A characterisation of contact geometry wheelset/track by one conicity value does not consider contact nonlinearity
- A simplified characterisation of the contact geometry wheelset/track considering the effect of the contact nonlinearity is needed for the assessment of wheels and rails and for the specifications of wheel/rail contact geometry

- Introduction
- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour
- Conclusions

Stability assessment using bifurcation diagram

 Bifurcation diagram displays the amplitude of limit cycle in function of speed

Contact geometry and stability assessment using bifurcation diagram

21st IAVSD Symposium, Stockholm, 17-21 August 2009

Effect of wheel/rail nonlinearity on the vehicle's behaviour at the stability limit

- Two contact geometries with equal conicity at the amplitude of 3 mm
- Assessment of the instability safety criteria according to EN 14363 after an excitation by a single lateral disturbance

BOMBARDIER

Effect of wheel/rail nonlinearity on different stability assessment methods

21st IAVSD Symposium, Stockholm, 17-21 August 2009

Bombardier Inc. or its subsidiaries. All rights reserved

- Introduction
- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour
- Conclusions

Proposed definition of wheel/rail characteristic parameters

- Parameter 1 Level parameter:
 Definition: Equivalent conicity for a wheelset amplitude of 3 mm
 Usage: Assessment of contact geometry regarding the instability safety limit according to EN 14363
 Parameter 2 Nonlinearity parameter:

 Definition: Slope of the equivalent conicity function
 Usage:

 Vehicle performance at the stability limit
 - Sensitivity of vehicle to the lateral excitation by track irregularity
- Definition 1:

$$\lambda_{N,1} = \frac{\lambda_4 - \lambda_2}{2}$$

- Definition 2:

$$\lambda_{N,2} = \frac{\lambda_5 - \lambda_1}{4}$$

- Introduction
- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour
- Conclusions

Examples of contact geometry wheelset/track

- Examples of contact geometry wheelset/track
 - Six examples wheel/rail profile combinations
 - Theoretical as well as worn profiles
 - Three levels of equivalent conicity
 - Two different contact nonlinearities for each conicity level
- Methods used to calculate the equivalent conicity
 - Harmonic linearisation, elastic wheel/rail contact with a wheel load of 70 kN
 - Harmonic linearisation, rigid wheel/rail contact
 - Equivalent linearisation by application of Klingel formula according to UIC 519
 - Linear regression of the Δr -function according to UIC 519
 - UK-method for a stochastic wheelset displacement with a standard deviation of 1.25, 2.50 and 3.75 mm

Middle equivalent conicity

21st IAVSD Symposium, Stockholm, 17-21 August 2009

High equivalent conicity

BOMBARDIER

Very high equivalent conicity

© Bombardier Inc. or its subsidiaries. All rights reserved.

BOMBARDIER

Comparison of conicity values for an amplitude of 3 mm

- Conclusion from this comparison:
 - Conicity is only an approximate parameter
 - It is not reasonable to insist on very exact conicity values in the specifications

21st IAVSD Symposium, Stockholm, 17-21 August 2009

Characterisation of investigated wheel/rail profile pairs by two parameters

- Introduction
- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour
- Conclusions

Bifurcation diagram and variation of the level parameter

- Nonlinearity parameter 0.03 ÷ 0.17
- Conicity: $0.64 \rightarrow 0.42 \rightarrow 0.23$

BOMBARDIER

Bifurcation diagram and variation of the nonlinearity parameter

- Conicity: 0.23 ÷ 0.42
- Nonlinearity parameter: $0.17 \rightarrow 0.03 \rightarrow -0.04 \rightarrow -0.05$

BOMBARDIER

Effect of nonlinearity parameter on the critical speed

- The proposed nonlinearity parameter can
 - explain differences between stability assessments by different methods using the contact geometry with the same conicity
 - explain differences between theoretical studies and on-track tests
 - contribute to better understanding of vehicle behaviour

a wheelset amplitude of 3 mm appears

Effect of nonlinearity parameter on the vehicle's behaviour on a straight track with measured irregularities

Measured track irregularity data, track 1

Effect of nonlinearity parameter on the vehicle's behaviour on a straight track with measured irregularities

Measured track irregularity data, track 2

O Bombardier Inc. or its subsidiaries. All rights reserved

Influence of track irregularities: Comparison of time plots

• Example: Lateral acceleration on the bogie frame, bogie 2

- The wheel/rail contact geometry has a dominating influence
- The resultant rms values are similar for the same wheel/rail contact geometry
- The results are related to the proposed nonlinearity parameter

- Introduction
- Effect of wheel/rail contact nonlinearity on vehicle dynamics
- Proposed parameters to characterise the wheel/rail contact
- Assessment of wheel/rail contact geometry examples
- Characteristic parameters and vehicle dynamic behaviour

Conclusions

BOMBARDIEK

Conclusions

- A new description characterising the wheel/rail contact geometry by two parameters is proposed
- The equivalent conicity for a wheelset amplitude of 3 mm is applied as the first parameter related to the risk of safety relevant self excited oscillations
- The second, newly introduced parameter allows an assessment of the expected behaviour at the stability limit and the sensitivity to the lateral track irregularities
- An assessment of the proposed parameters on six wheelset/track examples confirmed a correlation between these parameters and railways vehicle dynamic behaviour
- The proposed definition of characteristic parameters allows an improved but still comprehensive description of nonlinear wheel/rail contact geometry
- Further investigations, analyses and on-track tests are required to confirm the observed correlation and to assess the applicability of the proposed wheel/rail characterisation