Comparability of the Non-linear and Linearized Stability Assessment During Railway Vehicle Design

Oldrich POLACH

Bombardier Transportation Winterthur, Switzerland

Contents

- Introduction
- Linear stability assessment with quasi-linear wheel/rail contact model
- Non-linear stability assessment
- Comparison of non-linear and linearized stability assessment
- Conclusions

Introduction

- The dynamics of the vehicle at the stability limit is nonlinear by
 - contact geometry wheelset/track
 - creep forces between wheel and rail
- Usual presentation in literature:

 Real applications in simulation tools: <u>Quasi-linear</u> wheel/rail contact model

 The relation between the linear and non-linear critical speed depends on the method and parameters applied

Quasi-linear contact model wheelset/track

- Contact geometry function:
 - Difference of rolling radii

$$\Delta r = r_l - r_r = f(y)$$

- Contact angle difference
- Wheelset roll angle
- Linearized parameters:
 - Equivalent conicity as a function of wheelset amplitude *A*

$$\lambda(A) = \frac{1}{2\pi A} \int_{0}^{2\pi} \Delta r(A\sin\varphi) \cdot \sin\varphi \, d\varphi$$

- Contact angle parameter
- Roll parameter
- Is the equivalent conicity sufficient to specify the quasi-linear contact model?
 BOMBARDIER

Linearization parameters for real profile combinations

Wheel/rail combinations :

- △ S1002 / UIC60 1:40
- * S1002 / UIC54 1:40
- ♦ Cone 1:40 / UIC60 1:20
- + P8 / UIC60 1:20

- imes S1002 / UIC60 1:20
- O S1002 / UIC54E 1:40
- Cone 1:20 / 115RE 1:40
- □ S1002 / UIC54E 1:40 worn crown

Influence of contact angle and roll parameters

Other parameters influencing linearized analysis

Creep force law, represented by Kalker's factor

BOMBARDIER

Minimum damping to ensure stable running

→ 5 %

Overview of non-linear stability calculation methods

- A diversity of non-linear methods exists for stability assessment of railway vehicles dependent on
 - method
 - analysed values
 - criteria

- A four-car articulated vehicle modelled in Simpack
- Four examples of contact geometry wheelset/track with high equivalent conicity and gauge 1435 mm
- Wheel/rail friction coefficient 0.4 (dry)
- Results for the second wheelset

Contact geometry wheelset/track

 In railway standards (UIC Code 518), the contact geometry wheelset/track is described by the equivalent conicity for wheelset lateral amplitude of 3 mm

Equivalent conicity as function of wheelset amplitude

Simulation of run with decreasing speed

Method with single excitation

Bifurcation diagrams

Simulations of run on measured track irregularities

Simulations of vehicle acceptance tests

Dynamic behaviour after a single excitation

Assessment of behaviour after a single excitation

Comparison of resultant critical speeds

Equivalent conicity 0.4

Contact geometry

- No excitation, decreasing speed
- Bifurcation diagram
- □ Single excitation, oscillation damped
- Single excitation, sum of Y-forces, rms value [UIC 518]
- Single excitation, acceleration, rms value [UIC 518]
- Single excitation, acceleration, peak value [UIC 515]
- Track irregularity, sum of Y-forces, rms value [UIC 518]
- Track irregularity, acceleration, rms value [UIC 518]
- Track irregularity, acceleration, peak value [UIC 515]

Compared vehicle models

 Vehicle A: Four-car articulated vehicle with Jakobs' bogies and yaw dampers

 Vehicle B: Conventional passenger coach without yaw dampers

Compared parameters and conditions

- Quasi-linear analyses
 - Kalker's factor 0.67 and 1.0
 - Minimum damping 0% and 5%

- Non-linear analyses
 - Wheel/rail friction coefficient 0.4 and 0.5
 - Wheel/rail pairings to set up the specified conicity by
 - altering the track gauge
 - wearing of the rail profile
 - Method applied
 - damping behaviour after a single lateral disturbance
 - run on track with measured irregularities, criterion sum of guiding forces according to UIC 518

Comparison of resultant critical speeds – Vehicle A

Comparison of resultant critical speeds – Vehicle B

Conclusion

- The equivalent conicity is not a sufficient input for an exact stability assessment.
- Even for the same equivalent conicity:
 - the resultant linear critical speeds can vary dependet on other linearisation parameters, Kalker's factor and residual damping,
 - the resultant nonlinear critical speeds can vary dependet on the wheel/rail contact geometry, friction coefficient, calculation method and criteria applied.
- For the application of the linearized stability calculations during vehicle design conservative parameters are recommended in order to be on the safe side in comparison to the non-linear calculations.
- It was demonstrated that, applying the minimum damping of 5% and Kalker's factor 1.0, the critical speeds calculated with quasilinear wheel/rail contact model are <u>below</u> the non-linear critical speeds.

