

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry

Contents

- **§** Motivation
- **§** Methods for prediction of bogie stability
- **§** Comparison of methods on examples of wheel/rail contact geometry
- **§** Comparison of resultant critical speeds

Motivation

- **§** Typical task during the suspension design of railway vehicles:
 - What is the maximum speed at which the vehicle will run stable for the specified equivalent conicity?

or

- Which suspension parameters are needed to run stable for the given speed and equivalent conicity?
- **§** Questions to solve by the specialist:
 - Which method and criteria should be used? and
 - How to model the specified equivalent conicity in the nonlinear simulations?

Bogie and Carbody Stability

Definition of Stability Limit

§ Difference: Mechanics – Railway Standards

Classification of Methods for Stability Analysis

Simulation of Run with Decreasing Speed (No Excitation)

Excitation by a Single Lateral Irregularity

stable

unstable

Bifurcation Diagram

§ Amplitude of the limit cycle as function of speed

Simulation of Run on Measured Track Irregularity

Examples of Contact Geometry Wheelset/Track

- **§** Equivalent conicity: Specified for wheelset lateral amplitude of 3 mm
- **§** Four examples of wheel/rail contact geometry

Equivalent Conicity Function

Simulations of Run with Decreasing Speed

Method with Single Excitation

Bifurcation Diagrams

BOMBARDIER Experience the Extraordinary

Simulations of Run on Measured Track Irregularities

Experience the Extraordinary

Results of Simulations on Track Irregularities

Conicity 0.4

Conicity 0.6

Dynamic Behaviour after a Single Excitation

Stability Assessment of Behaviour after a Single Excitation

Comparison of Resultant Critical Speeds

Conicity 0.4

- No excitation, decreasing speed
- Bifurcation diagram
- □ Single excitation, oscillation damped
- Single excitation, sum of Y-forces, rms value [UIC 518]
- Single excitation, acceleration, rms value [UIC 518]
- Single excitation, acceleration, peak value [UIC 515]
- Track irregularity, sum of Y-forces, rms value [UIC 518]
- Track irregularity, acceleration, rms value [UIC 518]
- Track irregularity, acceleration, peak value [UIC 515]

Comparison of Resultant Critical Speeds

Conicity 0.6

- No excitation, decreasing speed
- Bifurcation diagram
- □ Single excitation, oscillation damped
- Single excitation, sum of Y-forces, rms value [UIC 518]
- Single excitation, acceleration, rms value [UIC 518]
- Single excitation, acceleration, peak value [UIC 515]
- Track irregularity, sum of Y-forces, rms value [UIC 518]
- Track irregularity, acceleration, rms value [UIC 518]
- Track irregularity, acceleration, peak value [UIC 515]

Conclusions (1): Nonlinear Method for Stability Analysis

- § Difference in definition of stability between Mechanics and Railway Engineering
- § The methods presented are comparable if no limit cycles with small amplitude occur
- § For a specified conicity, differences between the results occur dependent on the method, limit value and the contact geometry
- § If small limit cycles occur stability limits from the railway standards should be used to judge the results

Conclusions (2): Specification of Wheel/Rail Contact

- § Specification of the shape of wheel profile, rail profile, rail inclination and gauge
- Separate specification of the maximum wheelset related equivalent conicity and the maximum track related equivalent conicity
- § Only the maximum equivalent conicity specified: Recommended to use wheel/rail contact geometry with increasing or constant conicity function to avoid small limit cycles

