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Abstract  
  The paper presents several possible methods for 
nonlinear stability analysis. Irrespective of the 
method applied it can be demonstrated that, at the 
stability limit, either a limit cycle with a large 
amplitude manifests itself abruptly, or a limit cycle 
with very small amplitude develops first, whereby 
the amplitude then only slowly accumulates with 
increasing speed. This phenomenon is analysed in 
conjunction to the quasi-linear wheel/rail contact. 
The quasi-linearisation of the wheel/rail contact 
geometry indicates the behaviour to be anticipated at 
the stability limit, thereby enabling a better 
understanding of the nonlinear calculations and 
measuring results. 
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1  Introduction 
  Stability assessment plays an important role in 
railway vehicle dynamics. Depending on which body 
is predominantly excited by the oscillation form, 
differentiation between the car body instability and 
bogie instability can be made. The bogies 
demonstrate limit cycles for all speeds higher than 
the critical speed, whereas car body instability can 
sometime be suppressed with increasing speed. Bogie 
instability possesses safety relevance, as the evolving 
high lateral forces between wheel and rail could 
cause track displacement which in turn could lead to 
derailment (Fig. 1). With this in mind, bogie stability 
assessment plays a significant role during railway 
vehicle engineering. 
  During 1960/70 a theoretical comprehension of 
railway vehicle stability came into being as a result 
of studies founded on the linearised models; see the 
monographs of Wickens [Wickens, 2003] and the 
paper from Knothe and Böhm [Knothe and Böhm, 
1999] for historical overview and further references. 
At a later date the nonlinearities of wheel/rail 
combination were also taken into consideration, see 
the paper from True [True, 1999]. 

  Due to the wide range of input conditions and 
methods used for the stability assessment, the 
stability analysis provides probably the most 
diversified type of running dynamics calculations. 
Methods such as nonlinear and linearised 
calculations can be applied in various versions and 
the results can vary dependent on the method used. 
 
 

 
 
Fig. 1  Track shift after a test run with an older diesel 

engine (from [Köhler et al., 2003]) 
 
 
  The linearised and nonlinear methods demonstrate 
significant differences and are not always 
comparable. The nonlinear analyses using three-
dimensional vehicle models build up in a modern 
multi-body simulation tool, as it is the state-of-the-art 
in the railway vehicle industry today, allow detailed 
nonlinear stability analysis for the specified 
conditions. However, because of the variety and an 
important influence of the nonlinear wheel/rail 
contact geometry, the stability assessment results can 
lead to large differences dependent on the method 
and conditions used.  
  This paper analyses the contact geometry 
wheelset/track and its influence on the behaviour of a 
bogie at the stability limit. Different methods of 
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nonlinear stability analysis as they can, or may be 
used in industrial applications are introduced and 
compared. The linearisation used to calculate the 
quasi-linear equivalent conicity is presented. Further, 
the vehicle behaviour under the presence of different 
contact geometries leading to different linearised 
functions is compared on selected examples. It is 
shown, that the quasi-linearisation of the wheel/rail 
contact geometry suggests the behaviour to be 
anticipated at the stability limit. 
 

2  Nonlinear stability analysis 
 

2.1  Overview 
  The stability behaviour is highly sensitive to the 
nonlinearities of wheel/rail contact. These 
nonlinearities are triggered by the creep forces, and 
primarily by the contact geometry between wheelset 
and track. 
  There are several possible criteria for the 
classification of the nonlinear methods for the bogie 
stability assessment.  
  One possible classification is according to the 
analysed values. It can be  
• wheelset displacement (lateral or yaw 

displacement) 
• lateral forces between wheelset and track (sum 

of guiding forces, called also track shifting 
force) 

• lateral acceleration on the bogie frame. 
  Further criterion for the classification can be the 
definition of the stability limit. From a mechanical 
viewpoint, a system possessing the capability to 
oscillate can be viewed as stable if the oscillations 
decrease following discontinuation of the excitation. 
Should a limit cycle having constant amplitude arise 
at a particular running speed, this speed is defined as 
a critical speed. However, in railway practice and in 
the specifications concerning the vehicle acceptance 
as described in the code of International Union of 
Railways [UIC Code 518, 2003], in the draft of 
European standard [prEN 14 363, 2002] and in the 
US standard 49CFR238 [49CFR238, FRA, 2003], the 
bogie stability is defined by way of the limit values 
of the measuring quantities. Should the limit value be 
exceeded, the running behaviour is described as 
being unstable. 
  Another classification criterion is the type of 
excitation applied. Differentiation can be made 
between computer simulations 
• without excitation - running on ideal track, 

starting from the limit cycle and reducing the 
speed until a stable bogie motion is achieved 

• with excitation by a singular irregularity, 
followed by an ideal track (or with short 
irregularity sequence followed by an ideal track), 

with or without variation of the excitation 
amplitude 

• with excitation by stochastic (measured) track 
irregularity as used during the acceptance test of 
the vehicles. 

  In the following, the different methods of nonlinear 
stability analysis as they can, or may be used in 
industrial applications are introduced and compared 
on two selected examples of contact geometry 
wheelset/track with high equivalent conicity. 
Comparing the equivalent conicity for the lateral 
amplitude of 3 mm, which is used to characterise the 
contact geometry in railway practise, both examples 
demonstrate nearby the same value of approx. 0.4. 
  The simulations are carried out in the simulation 
tool Simpack with a completely nonlinear model of a 
four-car articulated motor unit, see Fig. 2. The 
friction between wheel and rail was set to 0.4 (dry 
rail). The results are given for the trailing wheelset of 
the first bogie, at which the stability limits are first 
reached. In the following, the methods are presented 
classified according to the excitation applied. 
 

 
 
Fig. 2 Simulation model of a four-car articulated 

vehicle 
 

2.2  Method without excitation 
  In this case a high speed during which the bogie 
moves in a limit cycle is used as initial condition and 
a continuous speed reduction takes place as applied 
e.g. in the investigation concerning the tuning of 
freight wagon bogies using inter-axle linkages 
[Orlova et al., 2002]. The speed at which the 
vibrations subside is designated as being the critical 
speed, see Fig. 3. For the contact geometry 04A the 
vibrations stop abruptly, whereas for the contact 
geometry 04B the wheelsets continue to vibrate in a 
small limit cycle, only stabilising at a significantly 
lower speed, which subsequently leads to 
significantly differing critical speeds at the same 
equivalent conicity. Both simulations start with 
flange-to-flange limit cycle of the wheelset, but the 
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behaviour of the wheelsets and bogie during the 
speed reduction is different as shown also in the 
Fig. 4, where the phase diagram of the lateral 
displacement of the leading and trailing wheelset is 
presented. 
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Fig. 3  Simulations of run with decreasing speed 
 

2.3  Methods with single excitation 
  Investigating damping behaviour following a single 
lateral track excitation, stability can be assessed; 
however the damping behaviour can differ for 
various contact geometries as can be seen in Fig. 5. 
Furthermore, because of the geometrical 
nonlinearities, multiple solutions can exist. The 
existence of multiple solutions in nonlinear 
dynamical parameter dependent problems is related 
to a phenomenon called “bifurcation”. The usual way 
to present this phenomenon is bifurcation diagram 
[True, 1999], [Schupp, 2004]. 
  When analysing the stability of railway vehicles, the 
bifurcation diagram displays amplitude of the limit 
cycle in function of speed as demonstrated on Fig. 6. 
Two typical situations can result: subcritical or 
supercritical bifurcation, see Fig. 7 [True and Kaas-
Petersen, 1983]. In case of subcritical bifurcation 
there is a speed range at which the solution can 
“jump” between a stable damped movement and a 
limit cycle depending on the excitation amplitude. In 
accordance with the investigated profile 
combinations, the bifurcation diagrams assume two 
basically different forms, see Fig. 8. In the case 04A 
it is a subcritical bifurcation with an unstable 
attractor and multiple solutions, whereas in the 

case 04B the solution corresponds to a supercritical 
bifurcation diagram, where the amplitude of the limit 
cycles increases continuously. 
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Fig. 4   Diagram of lateral displacements y1 and y2 of 

leading and trailing wheelset, respectively. 
 

2.4  Methods with stochastic excitation 
  To assess the bogie stability during the rail vehicle 
engineering, also the methods specified for 
measurements and acceptance tests can be applied. 
Running on straight track with stochastic (usually 
measured) irregularities is simulated and instability 
criteria for vehicle acceptance tests are applied for 
assessment. 
  In the presented comparison, the critical speeds 
evaluated using measuring criteria according to [UIC 
Code 518, 2003] and [prEN 14 363, 2002] were 
applied:  
• lateral forces between wheelset and track (sum 

of guiding forces) 
• lateral acceleration on the bogie frame 
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Fig. 5  Simulations of lateral wheelset displacement 

following a single lateral excitation 
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Fig. 6  Bifurcation diagram as result of the 

simulations of wheelset behaviour after an 
excitation 

 
 
  As critical speed, the speed was referenced at which 
the bogie instability limit is just achieved. A 
comparison of the results normalized with the limit 
value can be seen in Fig. 9. Although the calculated 
critical speeds are more similar than applying other 
methods, the progression of the investigated criteria 
with increasing speed is different. 
  Detailed description of presented stability analysis 
applying computer simulation of run on measured 
irregularities can be found in [Polach and Vetter, 
2004]. 
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Fig. 7  Types of bifurcation diagrams 
 
 
 

0

2

4

6

8

10

12

100 150 200 250 300 350 400 450 500

Speed   [km/h]

La
te

ra
l a

m
pl

itu
de

   
[m

m
]

0

2

4

6

8

10

12

100 150 200 250 300 350 400 450 500

Speed   [km/h]

La
te

ra
l a

m
pl

itu
de

   
[m

m
]

04A

04B

 
Fig. 8  Bifurcation diagrams for investigated profile 

combinations 
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Fig. 9   Normalised results of stability analysis 

running on track with irregularities 
 

2.5  Discussion 
  As can be seen from the presented comparisons, the 
behaviour of the wheelsets and bogie at the stability 
limit can be significantly different even for the same 
equivalent conicity. The differences observed make 
the assessment of the risk of instability more 
difficult. They are caused mainly by the nonlinearity 
of the contact geometry wheelset/track.  
  In the following, the quasi-linearisation of the 
contact geometry wheelset/track will be presented. 
The differing behaviour at the stability limit will be 
analysed in conjunction to this linearised parameters. 
 

3  Linearisation of the contact geometry 
wheelset/track 

  In railway applications, quasi-linearisation is largely 
resorted to in order to characterise the contact 
geometry wheelset/track with one parameter only – 
with the so-called equivalent conicity. To identify the 
equivalent conicity, characteristics of the 
wheelset/track pairing is “replaced” with an 
“equivalent wheelset” with conical wheel tread 
surface, whereby this “replacement” only possesses 
validity for one value of the wheelset lateral 
amplitude. The equivalent conicity is then the 
conicity of a conical wheelset which, at the 
prescribed lateral amplitude, demonstrates similar 
wavelike motion as the examined wheelset.  

  If the wheelset with conical tread profiles moves 
laterally with a displacement y from its centred 
position, the rolling radii of the right wheel rr and left 
wheel rl are different. The conicity λ of the wheel 
tread can be expressed as function of wheelset rolling 
radii difference Δr 

y
r

y
rr lr

22
∆

=
−

=λ         (1) 

The “describing function” yDF of rolling radii 
difference Δr in function of lateral wheelset 
displacement y is used when evaluating the 
equivalent conicity of the pairings of wheel and rail 
profiles. There exist several methods for determining 
the equivalent conicity which may partially lead to 
differing results for the same conditions. In the 
following analysis, method of harmonic linearisation 
[Mauer, 1991] will be applied. 
  To linearise the describing function ( )xfyDF =  
we should minimise the quadratic error between the 
nonlinear function ( )xfyDF = and the quasi-linear 
approach xkyDF ⋅=  

( )( )22 xkxf ⋅−=∆          (2) 

This mean that there is an extremum and therefore  

( ) 02 =∆
∂
∂
k

          (3) 

After a differentiation we get the coefficient k as 

( )
2x

xfxk ⋅
=           (4) 

With the harmonic approach with an amplitude A 

( ) tAtx ωω sin⋅=           (5) 

we get the “describing function” of the linear factor 
k(A) which is dependent on the amplitude A of the 
harmonic linearisation 

( ) ( ) ϕϕϕ
π

π

dAf
A

Ak sinsin1
2

0

⋅⋅
⋅

= ∫       (6) 

Setting the difference of wheelset rolling radii 
( )yfr =∆  as the “describing function” we get the 

equivalent conicity as nonlinear function of the 
linearisation amplitude A 

( ) ( ) ϕϕϕ
π

λ
π

dAr
A

A sinsin
2

1
2

0

⋅∆= ∫        (7) 

Based on the Equation (7), the equivalent conicity 
can be obtained by numerical integration of the 
nonlinear geometrical function of wheelset rolling 
radii difference Δr. 
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  As the contact points between wheel and rail 
usually do not move continuously in function of 
wheelset lateral displacement and large “jumps” 
between the contact points are not rare, the function 
of rolling radii difference and consequently also the 
equivalent conicity are not monotonous functions. 
The relation between the equivalent conicity function 
and bogie’s behaviour at the stability limit is 
discussed in the next chapter. 
 

4  Linearised contact parameters and bogie’s 
behaviour at the stability limit 

  The linearisation of the contact geometry 
wheelset/track and the equivalent conicity is used not 
only for linear calculations but also to characterise 
the track (combining the measured rail profiles with 
theoretical wheel profiles), the geometry of worn 
wheel profiles (combining the measured wheel 
profiles with theoretical rail profiles), or the 
geometrical conditions of the wheelset on track 
(combining theoretical or measured wheel and rail 
profiles). For the analysis of wheelset’s and bogie’s 
behaviour, the contact conditions are relevant 
occurring for wheelset amplitude up to 
approximately a half of the gauge clearance. The 
value of equivalent conicity for a wheelset lateral 
amplitude of 3 mm is used to characterise the contact 
geometry wheelset/track in railway praxis [UIC Code 
518, 2003]. 
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Fig. 10  The contact geometry of the investigated 

profile pairings 
 
 
  The analysis of the contact geometry wheelset/track 
as used for quasi-linearisation can also enable a 
better judgement of the simulation results. 
Irrespective of the method applied, it was 
demonstrated that, at the stability limit, either a limit 
cycle with large amplitude manifests itself abruptly, 

or a limit cycle with very small amplitude develops 
first, whereby the amplitude then only slowly 
increases with increasing speed. Let us compare the 
describing functions of rolling radii difference and 
the equivalent conicity function of the contact 
geometry examples analysed in Chapter 2. The 
positions of the contact points on wheel and rail at 
different lateral wheelset displacements are 
visualised in Fig. 10. Fig. 11 shows the rolling radii 
difference functions. For the pairing 04A, there is 
nearby no movement of the contact point below 
2 mm wheelset displacement, but there is large 
movement of the contact point on the left rail for 
amplitudes between 2 and 3 mm, which leads to a 
step in the function of rolling radii difference. The 
function is progressive between 0 and 3 mm. For the 
pairing 04B, there is the largest movement of the 
contact point on the left rail for the wheelset 
displacement between 0 and 1 mm, leading to a 
degressive form of the rolling radii difference 
function. 
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Fig. 11   Rolling radii difference Δr in function of 

lateral wheelset displacement y 
 
 
  As the rolling radius difference can show large 
variation, also the equivalent conicity can achieve 
various progressions in the function of amplitude. 
Fig. 12 presents the corresponding equivalent 
conicity functions calculated for rigid contact as 



                                                    

 2209 

usually used in railway praxis, and for quasi-elastic 
contact as implemented in SIMPACK [Netter et al., 
1998]. The quasi-elastic contact considers the contact 
elasticity and demonstrates more realistic contact 
conditions than the rigid contact. It is therefore 
applied in presented simulations. In spite of small 
differences between the rigid and quasi-elastic 
contact, the diagrams show similar tendencies. 
Whereas the conicity for large amplitudes (above 6 
mm) achieves high value in both cases, the 
progression for smaller amplitudes demonstrates 
either an increasing or decreasing form in accordance 
with the rolling radius difference presented in 
Fig. 11. The contact geometry 04A indicates an 
increase of conicity in the lateral amplitude range 
below 3 mm. Conversely, the contact geometry 04B 
indicates a decreasing conicity in the lateral 
amplitude range of 0 to 3 mm. 
 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Lateral amplitude   [mm]

C
on

ic
ity

  [
 - 

]

04A

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Lateral amplitude   [mm]

C
on

ic
ity

  [
 - 

]

04B

              Rigid contact
              Quasi-elastic contact

 
 
Fig. 12  Equivalent conicity diagrams 
 
 
  Comparing the equivalent conicity function with the 
results of the stability analysis presented in Chapter 
2, a relation between the equivalent conicity and the 
behaviour at the stability limit can be observed. An 
increasing equivalent conicity function in the range 
of wheelset lateral amplitude below approx. 3 mm 
leads to an abrupt limit cycle with large amplitude 
(subcritical bifurcation), whereas a decreasing 
conicity for wheelset lateral amplitude below 3 mm 
leads to supercritical bifurcation with limit cycles 
with small amplitudes only slowly accumulating with 

increasing speed. This relation was also observed for 
other wheelset/track contact geometries and 
confirmed to be a regularity enabling a better 
judgement of the simulation results at the stability 
limit. 
  The equivalent conicity for specified linearisation 
amplitude characterises the wheelset behaviour 
during the wavelike motion with this amplitude. 
Should the linearisation for the individual amplitudes 
be carried out, and the quasi-linear critical speed for 
those linearisation parameters calculated, we achieve 
a set of values with a distribution similar to those 
demonstrated in the bifurcation diagram, see Fig. 13. 
This figure demonstrates that the quasi-linear 
solution is usually similar to the nonlinear analysis if 
the quasi-linear parameters calculated for the 
specified wheelset amplitude are applied. The 
differences between nonlinear and linearised 
calculations as referenced e.g. in [True, 1999], 
[Knothe and Böhm, 1999] occur mainly if the 
linearisation is carried out around the centred 
position, for amplitude → 0, which is usually not 
used in railway applications. 
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Fig. 13   Comparison of nonlinear and quasi-linear 

solutions of examined combinations 
wheelset/track 

 
 
  The behaviour of the wheelsets and bogie at the 
stability limit, e.g. the transition from the stable run 
to a limit cycle, the occurrence of a limit cycle and 
the amplitude of a limit cycle, are very sensitive to 
the contact geometry wheelset/track. The behaviour 
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demonstrated in computer simulations can vary 
dependent on the modelling of the contact geometry. 
Small differences in the contact geometry caused e.g. 
by different input data exactness or by filtering of the 
profile data may lead to differences in the simulated 
behaviour. The results can differ also in dependence 
of the application of rigid or elastic wheel/rail 
contact. The analysis of the contact geometry 
wheelset/track as used for the quasi-linearisation 
implies the nonlinear behaviour at the stability limit 
and can support the understanding of the nonlinear 
analyses. 
 

5  Conclusion 
  The analysis of the contact geometry wheelset/track 
may not only serve as input for the linearised 
calculation, but also imply the nonlinear behaviour at 
the stability limit, thereby enabling better 
understanding of the nonlinear calculations and 
measuring results. A decreasing equivalent conicity 
function in the range of amplitudes below approx. 
3 mm leads to a supercritical bifurcation and a limit 
cycle with small amplitude only slowly accumulating 
with increasing speed, whereas the increasing 
equivalent conicity is linked with subcritical 
bifurcation characterised by an abrupt transition from 
stable behaviour to a pronounced limit cycle with 
large amplitude. 
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